Ab-initio screening of 3D lead-free hybrid perovskite materials and luminescence recovery of CH₃NH₃PbBr₃ by H₂O and O₂ gas

 Xiaoyang Che,^{1,2} Hong-Hua Fang³, Maria Antonietta Loi³, Claudine Katan¹, Mikaël Kepenekian¹, Jacky Even²
¹ISCR, Université de Rennes 1, CNRS, Rennes, 35042, France.
²FOTTON, INSA, CNRS, Rennes 35042, France.
³ZIAM, University of Groningen, Groningen, 9747 AG, The Netherlands. E-mail: xiaoyang.che.1@univ-rennes1.fr

The recent revolutionary increase of power conversion efficiency of perovskite-based solar has motivated a growing number of experimental and theoretical studies on 3-dimensional hybrid halide perovskite lights absorbers such us CH₃NH₃PbI₃. Nevertheless, there remains toxicity arising from lead and solving instability issues from industrial perspective. In this work, a computational screening of the lead-free materials has been performed.¹ We have investigated the geometrical an electronic structures of different ABX₃ structures(A⁺=organic cations, B²⁺ = metallic cations, X⁻=halide anion) in orthorhombic *Pnma* phase by means of the ab-initio calculations based on Density Functional Theory (DFT). Furthermore, we have pursued the studies on CH₃NH₃PbBr₃, since this material exhibits interesting luminescent properties, so far the surface defect is one of the major factor for the quenching effect.² It has been reported that moisture and O₂ gas can recover the luminescent property. In order to elucidate the luminescence quenching-reactivating mechanism, the structural, electronic and optical properties have been inspected both for bulk in orthorhombic phases and (010) surface orientation.

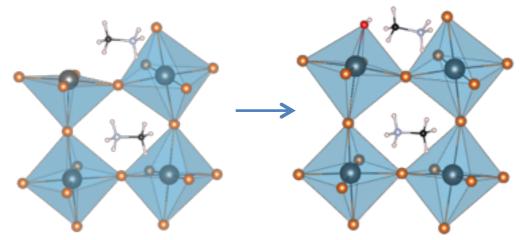


Figure 1 CH₃NH₃PbBr₃ (010) surface defects and surface passivation by OH-

References

- 1. Filip, M. R. and Giustino, F., J. Phys. Chem. C (2015), 120, 166
- 2. H. Wei et al. Nature Photonics (2016), 10, 333