Contactless n-type doping measurement of single GaAs nanowire by cathodoluminescence

Hung-Ling Chen¹, Andrea Scaccabarozzi^{1,2}, Chalermchai Himwas^{1,3}, Andrea Cattoni¹, Pierre Rale¹, Fabrice Oehler¹, Aristide Lemaître¹, Laurent Lombez⁴, Jean-François Guillemoles⁴, Maria Tchernycheva³, Jean-Christophe Harmand¹, Stéphane Collin^{1,2}

¹Centre de Nanosciences et de Nanotechnologies (C2N), site de Marcoussis, CNRS, 91460 Marcoussis

²Institut Photovoltaïque d'Ile-de-France (IPVF), 8 rue de la Renaissance, 92160 Antony

³Centre de Nanosciences et de Nanotechnologies (C2N), site d'Orsay, CNRS, Université Paris-Sud, 91405 Orsay

⁴Institut de Recherche et Développement sur l'Energie Photovoltaïque (IRDEP) EDF/CNRS/Chimie Paris Tech, 78400 Chatou

E-mail : <u>hung-ling.chen@lpn.cnrs.fr</u>

Nanowire arrays are promising architecture to realize efficient opto-electronic device. In photovoltaic application, they present natural light-trapping properties. Small lateral dimension makes it possible to integrate III-V nanowires on silicon cells, or to fabricate flexible devices. However, controlling and measuring the nanowire doping is one of the most challenging issues.

We investigate the carrier concentration from room-temperature cathodoluminescence measurement of silicon doped GaAs samples. Figure 1 shows normalized luminescence of un-doped reference, MBE grown GaAs:Si nanowire, and three planar reference samples with electron density determined by Hall measurements, ranging from 5×10¹⁷ to 6×10¹⁸ cm⁻³. The spectra present only a single peak across the bandgap of GaAs (1.424eV at room temperature), indicating dominant band-to-band transition. We observe a blueshift of the peak energy with increasing electron density (Burstein-Moss shift), confirming n-type silicon dopant since conduction band has much smaller effective density of states than valence band. At lower energy side, luminescence tails are developed with increased carrier concentration as a result of increased potential fluctuation from ionized donor. The doping of GaAs:Si nanowires is estimated to 3-5×10¹⁸ cm⁻³.

Luminescence lineshapes are further analyzed with the generalized Planck's law to retrieve physical parameters such as electron Fermi energy and the band tail broadening parameter. Both of them can be related to the electron concentration. Cathodoluminescence gives an alternative way to probe carrier concentration for nanoscale materials, and is able to detect spatial inhomogeneity of dopant.

Figure 1: Comparison of GaAs luminescence spectra with different n-type doping concentration.